Character of speech silence as a diagnostic biomarker of early cognitive decline and its functional mechanism: a multicenter cross-sectional cohort study | BMC Medicine

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–17.

    CAS Google Scholar Article

  • Qiao Y, Xie XY, Lin GZ, Zou Y, Chen SD, Ren RJ, et al. Computer-assisted speech analysis in mild cognitive impairment and Alzheimer’s disease: a pilot study in Shanghai, China. J Alzheimers Dis. 2020;75(1):211–21.

    Google Scholar article

  • Ahmed S, Haigh AM, de Jager CA, Garrard P. Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain. 2013;136(Pt 12):3727–37.

    Google Scholar article

  • Ye Z, Hu S, Li J, Xie X, Geng M, Yu J, Xu J, Xue B, Li S. Development of Cuhk elderly voice recognition system for detection of neurocognitive disorders using Dementiabank corpus . ICASSP 2021 – IEEE 2021 International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. p. 6433-7.

  • Martinez-Nicolas I, Llorente TE, Martinez-Sanchez F, Meilan JJG. Ten years of research on automatic voice and speech analysis of people with Alzheimer’s disease and mild cognitive impairment: a systematic review article. Before Psychol. 2021;12:620251.

    Google Scholar article

  • Pistono A, Pariente J, Bezy C, Lemesle B, Le Men J, Jucla M. What happens when nothing happens? An investigation of pauses as a compensatory mechanism in early Alzheimer’s disease. Neuropsychology. 2019;124:133–43.

    CAS Google Scholar Article

  • Patricia Pastoriza-Domínguez IGT, Diéguez-Vide F, Gómez-Ruiz I, Geladó S, Bello-López J, Ávila-Rivera A, et al. The distribution of pauses in speech as an early marker of Alzheimer’s disease. Speech Comm. 2022;136:107–17.

    Google Scholar article

  • Balogh R, Imre N, Gosztolya G, Hoffmann L, Pakaski M, Kalman J. The role of silence in fluency tasks – a new approach for the detection of mild cognitive impairment. J Int Neuropsychol Soc. 2022;1-13. https://doi.org/10.1017/S1355617721001454.

  • Pistono A, Jucla M, Barbeau EJ, Saint-Aubert L, Lemesle B, Calvet B, et al. Pauses during autobiographical speech reflect episodic memory processes in early Alzheimer’s disease. J Alzheimers Dis. 2016;50(3):687–98.

    Google Scholar article

  • Yeung A, Iaboni A, Rochon E, Lavoie M, Santiago C, Yancheva M, et al. Correlate natural language processing and automated speech analysis with clinician assessment to quantify language changes in mild cognitive impairment and Alzheimer’s dementia. Alzheimer Res Ther. 2021;13(1):109.

    Google Scholar article

  • Crosson B, McGregor K, Gopinath KS, Conway TW, Benjamin M, Chang YL, et al. Functional MRI of language in aphasia: review of the literature and methodological issues. Neuropsychol Rev. 2007;17(2):157–77.

    Google Scholar article

  • Folstein MF, Folstein SE, McHugh PR. “mini-mental state”. A practical method to assess the cognitive status of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    CAS Google Scholar Article

  • Goodglass H, KE. Assessment of Aphasia and Related Disorders, 2nd Edition. Philadelphia: Lea Febiger; 1983.

    Google Scholar

  • Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dementia Geriatr Cogn Disord. 2013;36(3-4):242–50.

    Google Scholar article

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations of the working groups of the National Institute of Aging and the Alzheimer’s Association on guidelines for the diagnosis of Alzheimer’s disease. Alzheimer’s dementia. 2011;7(3):263–9.

    Google Scholar article

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.

    CAS Google Scholar Article

  • Becker JT, Boller F, Lopez OL, Saxton J, McGonigle KL. The natural history of Alzheimer’s disease. Description of the study cohort and diagnostic accuracy. Arch Neurol. 1994;51(6):585–94.

    CAS Google Scholar Article

  • Fraser KC, Meltzer JA, Rudzicz F. Linguistic features identify Alzheimer’s disease in narrative discourse. J Alzheimers Dis. 2016;49(2):407–22.

    Google Scholar article

  • Hernandez-Dominguez L, Ratte S, Sierra-Martinez G, Roche-Bergua A. Computerized assessment of patients with Alzheimer’s disease and mild cognitive impairment during a picture description task. Alzheimer’s dementia (Amst). 2018;10:260–8.

    Google Scholar article

  • Pakhomov SV, Smith GE, Chacon D, Feliciano Y, Graff-Radford N, Caselli R, et al. Computerized speech and language analysis to identify psycholinguistic correlates of frontotemporal lobar degeneration. Cogn Behav Neurol. 2010;23(3):165–77.

    Google Scholar article

  • Forbes-McKay K, Shanks MF, Venneri A. Profiling spontaneous speech decline in Alzheimer’s disease: a longitudinal study. Acta Neuropsychiatrist. 2013;25(6):320–7.

    Google Scholar article

  • Konig A, Satt A, Sorin A, Hoory R, ​​Toledo-Ronen O, Derreumaux A, et al. Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer’s dementia (Amst). 2015;1(1):112–24.

    Google Scholar article

  • Toth L, Hoffmann I, Gosztolya G, Vincze V, Szatloczki G, Banreti Z, et al. A solution based on voice recognition for the automatic detection of mild cognitive impairment from spontaneous speech. Curr Alzheimer Res. 2018;15(2):130–8.

    CAS Google Scholar Article

  • Anderson AJ, Lin F. How analyzes of information about patterns of semantic brain activity elicited in language comprehension could contribute to the early identification of Alzheimer’s disease. Neuroimage-Clin. 2019;22:101788.

    Google Scholar article

  • Friederici AD. The cerebral basis of language processing: from structure to function. Physiol Rev. 2011;91(4):1357–92.

    Google Scholar article

  • Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houde O, et al. Meta-analysis of linguistic areas of the left hemisphere: phonology, semantics and sentence processing. Neuroimage. 2006;30(4):1414–32.

    CAS Google Scholar Article

  • Shafto MA, Tyler LK. Language in the aging brain: network dynamics of cognitive decline and preservation. Science. 2014;346(6209):583–7.

    CAS Google Scholar Article

  • McGeown WJ, Shanks MF, Forbes-McKay KE, Venneri A. Patterns of brain activity during a semantic task differentiate normal aging from early Alzheimer’s disease. Psychiatry Res. 2009;173(3):218–27.

    Google Scholar article

  • Paulesu E, Goldacre B, Scifo P, Cappa SF, Gilardi MC, Castiglioni I, et al. Functional heterogeneity of the left inferior frontal cortex revealed by fMRI. Neuroreport. 1997;8(8):2011–7.

    CAS Google Scholar Article

  • Metzger FG, Schopp B, Haeussinger FB, Dehnen K, Synofzik M, Fallgatter AJ, et al. Brain activation in frontotemporal dementia and Alzheimer’s disease: a functional near-infrared spectroscopy study. Alzheimer Res Ther. 2016;8(1):56.

    Google Scholar article

  • Vaughan RM, Coen RF, Kenny R, Lawlor BA. Semantic and phonemic difference in verbal fluency in mild cognitive impairment: potential predictor of progression to Alzheimer’s disease. J Am Geriatr Soc. 2018;66(4):755–9.

    Google Scholar article

  • Woodard JL, Seidenberg M, Nielson KA, Antuono P, Guidotti L, Durgerian S, et al. Activation of semantic memory in amnesic mild cognitive disorders. Brain. 2009;132(Pt 8):2068–78.

    CAS Google Scholar Article

  • Meinzer M, Flaisch T, Seeds L, Harnish S, Antonenko D, Witte V, et al. Same modulation but different starting points: Performance modulates age differences in lower frontal cortex activity during word retrieval. PLoS One. 2012;7(3):e33631.

  • Yuan Q, Li H, Du B, Dang Q, Chang Q, Zhang Z, et al. The cerebellum and cognition: further evidence of its role in language control. Cerebral cortex. 2022;bhac051. https://doi.org/10.1093/cercor/bhac051.

  • Hartwigsen G, Neef NE, Camilleri JA, Margulies DS, Eickhoff SB. Functional segregation of the right inferior frontal gyrus: evidence for coactivation-based fragmentation. Cerebral cortex. 2019;29(4):1532–46.

    Google Scholar article

  • Jiao Y, Lin F, Wu J, Li H, Fu W, Huo R, et al. Plasticity in the language cortex and white matter pathways after resection of arteriovenous malformations of the dominant inferior parietal lobule: a combined fMRI and DTI study. J Neurosurgery. 2020;134(3):953–60.

    Google Scholar article

  • Cabeza R. Reduction of hemispheric asymmetry in the elderly: the HAROLD model. Psychological aging. 2002;17(1):85-100.

  • Wierenga CE, Stricker NH, McCauley A, Simmons A, Jak AJ, Chang YL, et al. Increased functional brain response during word retrieval in cognitively intact older adults at genetic risk for Alzheimer’s disease. Neuroimage. 2010;51(3):1222–33.

    Google Scholar article

  • Marsolais Y, Perlbarg V, Benali H, Joanette Y. Age-related changes in functional network connectivity associated with high levels of verbal fluency performance. Cortex. 2014;58:123–38.

    Google Scholar article

  • Pistono A, Guerrier L, Peran P, Rafiq M, Gimeno M, Bezy C, et al. Increased functional connectivity supports language performance in healthy aging despite loss of gray matter. Neurobiol Aging. 2021;98:52–62.

  • Mohanty R, Gonzalez-Burgos L, Diaz-Flores L, Muehlboeck JS, Barroso J, Ferreira D, et al. Functional connectivity and phonemic fluency compensation in aging. Front Aging Neurosci. 2021;13:644611.


  • Source link

    Comments are closed.